Quantum Monte Carlo Calculations of Solids

Burkhard Militzer

Departments of **Earth and Planetary Science**and **Astronomy**

University of California
Berkeley

Feb. 9, 2010

http://militzer.berkeley.edu

The is a team effort. We acknowledged invaluable contributes from:

- Ken Esler, Jeongnim Kim, David Ceperley (UIUC)
- R. E. Cohen (Carnegie Institution of Washington)
- K. P. Driver, J. W. Wilkins (Ohio SU)
- P. López Ríos, M. D. Towler, R. J. Needs (Casino team, Cambridge)
- Steven Stackhouse and Hugh Wilson (UC Berkeley)
- Richard Hennig, Cyrus Umrigar (Cornell)

How does Quantum Monte Carlo Work?

$$\hat{H}\Psi(\mathbf{R}) = \left[\hat{T} + \hat{V}\right]\Psi(\mathbf{R}) = \left[-\sum_{i=1}^{N} \frac{\hbar^2}{2m_i} \nabla_{\mathbf{r}_i}^2 + \sum_{i>j}^{N} \frac{Z_i Z_j}{|\mathbf{r}_i - \mathbf{r}_j|}\right] \Psi(\mathbf{R}) = E\Psi(\mathbf{R}),$$

Project out the many-body ground-state wave function:

$$\begin{split} e^{-\tau \hat{H}} \psi_T(R) &= e^{-\tau \hat{H}} \Big[a_0 \psi_0 + a_1 \psi_1 + a_2 \psi_2 + \ldots \Big] \\ &= a_0 e^{-\tau E_0} \psi_0 + a_1 e^{-\tau E_1} \psi_1 + a_2 e^{-\tau E_2} \psi_2 + \ldots \\ &\text{Increased weight} &\text{Reduced weight} &\text{weight} \end{split}$$

Approach the ground state iteratively:

$$\psi_{i+1}(R) = e^{-\tau \hat{H}} \psi_i(R)$$

$$\lim_{i\to\infty} \psi_i(R) = \psi_0(R)$$

For small time steps, τ , split the kinetic and potential operators:

$$e^{-\tau \hat{H}} \equiv e^{-\tau (\hat{T} + \hat{V})} \approx e^{-\tau \hat{T}} e^{-\tau \hat{V}} e^{-O(\tau^2)}$$

Illustration of QMC

Trial Wave Function for High Efficiency and Fermion nodes

$$\Psi(\mathbf{R}) = e^{J(\mathbf{R})} D^{\uparrow}(\mathbf{r}_1, \dots, \mathbf{r}_{N_{\uparrow}}) D^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1}, \dots, \mathbf{r}_N)$$

Approximations in current QMC calculations:

- Slater determinant is constructed from DFT orbitals
- Geometries may be taken from DFT
- Pseudopotentials are used in most cases

Three recent QMC Applications

- 1) Addressing the DFT band gap problem illustrated for solid helium
- 2) Phase Transitions in Silica Quartz
- 3) Fundamental high pressure scale for cubic boron nitride

QMC Calculation of the Metallization of Solid Helium under Pressure

Method comparison

- ◆ QMC and GW: <u>agreement</u>
- ◆ GGA:
 - *Underestimates gap by 4eV
 - *40% difference in pressure
 - *20% difference in density

→QMC done with Casino code (Cambridge).

Solid helium metallizes at extreme pressure of 25.7 TPa. This transition is important for the heat transfer in hydrogen-poor white dwarfs.

Khairallah & Militzer, Phys. Rev. Lett. 101 (2008) 106407

White dwarf layers:

Phase Diagram of Silica SiO₂

- 1) Quartz and Coesite are 4-fold coordinated
- 2) Stishovite and post-stishovite phases are 6-fold coordinated
- 3) Stishovite undergoes a ferroelastic transition (2nd order) to CaCl₂
- 4) α -PbO₂ is the last structural change before reaching core-mantle boundary

The Choice between Two Imperfect Functionals:

LDA predicts the wrong ground-state structure (stishovite instead of quartz)

Quartz-Stishovite Transition Pressure (GPa)

GGA predicts a bulk modulus that is 20% too low

Stishovite Bulk Modulus (GPa)

- •LDA tends to predict structural properties of given phases better than GGA (lattice and elastic constants)
- •LDA fails to predict the quartz-stishovite transition; GGA gets it correct.
- •Why? possibly because 6-fold coordinated stishovite has more homogeneous charge density than 4-fold coordinated quartz and coesite. GGA is able to accommodate, but LDA is not. (However, LDA does better than GGA for the quartz-coesite transition)
- •DFT functionals can be unreliable; there is no functional which can provide exact results
- •QMC explicitly computed the exchange and correlation, offering much better accuracy and reliability.

John Wilkins' group works on interstitial defects in silicon, silica, and magnesium silicate calculations with QMC.

QMC and DFT Predictions for the Transition Pressure Enthalpy Differences vs Pressure

K. Driver et al. submitted to Proc. Nat. Acad. Sci. (2009)

First All-Electron QMC Calculations performed

On a coarse scale the equation of state looks fine

- The goal: A new pressure scale for diamond anvil experiments
- Calibrate using highly accurate simulations rather than experiments.
- First all electron QMC calculations for solids heavier than H and He.
- The pseudopotential approximation avoided.
- Shown that Goncharov's experiments are more accurate.

Ken Esler et al. submitted to Phys. Rev. Lett. (2009)

The Problem: Different DFT Functionals Predict different Core states

Final Solution: All electron QMC results predict Goncharov's experiment more accurate

Fabulous 10...15x Speed-Up of QMC on GPU (NVIDIA-CUDA)

Fabulous 10...15x Speed-Up of QMC on GPU (NVIDIA-CUDA)

Speed up is a result of new way to parallelize the QMC algorithm (Esler, Kim & Ceperley at UIUC):

```
Standard way to distribute work among

CPUs using OpenMP/MPI:

Loop over MC generation

Loop of walkers on many CPUs

Loop over particles

MC move

Reweight + branch

...

end

end

end
```

```
New way to distribute work among GPUs
Loop over MC generation
  > Loop of particles
         Loop over walkers 4096+ threads per GPU
              MC move
         end
    end
   Loop of particles
         Loop over walkers 4096+ threads per GPU
              Reweight + branch
         end
    end
end
```

Single precision is also used whenever possible.